
           KERR METRIC FOR THE ELECTRON N. Albers,    11/28/2008

The angular momentum singularity is elucidated by null geodesics in Cartesian coordinates.  

       Part I:  Learning to crawl

The general Kerr metric may be written in axially symmetric coordinates [1] 

(transformed from Cartesian)  as:          

ds 2= 1− 2m 

2a2cos2  c 2d t 2 −
2a2cos2 
2a 2−2m 

d 2 − 2a2cos2  d 2 −  

          [2a 2sin2 
2m a2sin4 
2a 2cos2  ]d 2 −

4 m a sin2 
2a2cos2 

cdt d  . (1)  

Since the Schwarzschild radius m  of electron is in the range of E-57 meters, and the 

“angular momentum radius”  a  is about E-13 meters, we can in some instances drop 

terms in m.    There is, however, a severe analytic difference here, in that  ρ  can go 

strictly to zero in the range for the original Cartesian r  between 0 and  a.     In these 

cases assumptions must be reexamined, as one can see with the denominator in the 

first term.  If the angular cosine can go to zero then the fraction blows up as  1/ρ,   as 

ρ  nears 2m.  One might choose to be unconcerned about behavior at such small radii,  

but this occurs also near  r=a.  Let us examine the degeneracy in this radial transform. 

         Stepping back a bit, we must get familiar with the coordinate transforms 

which got us to this point.  We defined ρ  as the real part of the generalized radius, 

which was allowed a complex part:   2 = x 2  y 2  z−ia 2 .   We define real and 

imaginary parts:    ≡i   but will find a near range where the real part does not 

exist.  Solving for this:     2−2 = r 2−a2 where r  is the original Cartesian radius, 

and:  =
−az
 .     Algebraically we can see the possibility of the sums producing 

negative  2   so let us investigate the locus where:  = 0 .   A polar angle is newly  
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defined:  cos ≡
z
  so we can put this in for  σ  and get:  

       2−a 2cos2  = r 2−a 2 . (2) 

If we try to solve for zero  ρ,   r 2−a 2a2cos2  = 0 ,   or:    r 2−a 2sin2  = 0 .  (3) 

This seems reasonable and the confusion arises because both z  and ρ  go to zero. 

This is built into the definitions so that ρ  is always at least as great as |z|.  Leaving  in 

terms with z  rather than cos  , we  can write the quadratic solution:

                          2 = 1
2
r 2−a2  [14 r 2−a 22a 2z 2]

1 /2

.            (4) 

Here the plus sign has been chosen to get farfield consistency, and it gives a curious 

turnaround as r  becomes less than a.  Let the z-component be zero, then the square 

of ρ  is still defined and is zero for r<a.   For  r>a ,  the two terms add and there is 

positive ρ.  Thus the locus of zero ρ   is  z=0,   r≤a. 

     There is a degeneracy of information, however, which actually has been 

transferred to the other variables.  The coordinate transform by which the final  

coordinates were expressed defines azimuth angle  ϕ  as:

                    −ia e i sin  ≡ x iy                     (5) 

where  ρ   and   have already been defined.  Let us ask about points on the disc of 

z=0    and    r≤a.   When r=a  the regime of  ρ=0   begins, as we go inward, so we can 

write the above:    −iae i sin ≡x iy . (6)  

Looking at the magnitude of each side, here the radius of the circle in <x,y>  is  a. 

Thus the polar angle    is  π/2.    As we come “in” to lesser radii in <x,y>,  however, 

the polar angle folds upward by definition.  Thus it moves smoothly toward a definition: 

      sin =0     where   <x,y,z>= 0.   

This illuminates our earlier confusion.    One could sense that  z/ρ  neared unity, but 
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this is only true near the center in r.   The mapping into    can be understood if we  

take the magnitude of both sides when both z  and  ρ  are zero.   Thus in this locus,  

sin =r /a .      (7)

There were other transforms on the way to this analysis which we will now 

list.  First was the Eddington transform of the time variable to get degenerate form:

x 0=x 02m log∣ r
2m

− 1∣ .    (8) 

Then after the establishment of 〈 , , 〉 ,  there are two other transforms in 

〈 x 0,〉  to the final coordinates,  〈 x 0, ,  ,  〉 ,  which will be dealt with as needed. 

They are introduced to eliminate differential cross-terms in the metric expression.  

     

 Part II:   Learning to walk

Having an awareness of the coordinate behavior we may proceed to 

investigate null geodesics,  or possible light-paths characterized by:  ds 2=0 .   Our 

expressions are in transformed coordinates and my goal is to examine the field in the 

original Cartesian “external”  variables.   We shall deal with the transforms as we need 

to.  The first step is to examine the locus  =0 ;  as long as this is so, dρ=0.  Thus 

we need not consider the first spatial term in the metric.  In fact, changes of radial  

measure r  are mapped into changes of  ,  as noted above.  Differentiating both 

sides of the relevant constraint:  d sin = 1

a
dr = cos d  .                                  (9) 

This is conveniently substituted to get terms in <r, dr>  and the metric form in this 

instance now reads:       ds 2= c 2d t 2− dr 2 ,             (10)  

with a caveat:  we are allowed to zero out the fraction multiplying the time differential  

only as long as there is non-zero  cos  .   We must approach the singular point at 
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r=a  with caution,  though for any r<a   (and z=0 )  the term is strictly unity.  Later on  

we will investigate the limit approaching this point from the outside.  To deal with the 

time coordinate,  the Eddington transform implies:

d x 0= dx 0 
dr

r /2m −1
,                                      (11) 

and this can be substituted into the metric expression.  The final transforms involved 

adding different terms in ρ  to the time variable, but as long as we remain in the locus 

of  ρ=0,  nothing will change in our present discussion.  Now we may say:  

ds 2= [dx 0 dr
r /2m −1 ]

2

−dr 2 ,           (12)  

and to investigate null geodesics we set the LHS to zero, enabling us to write:  

±dr = dx 0
dr

r /2m −1
,  (13)       and then:    dx 0= dr [±1− 1

r /2m −1
] .   (14)  

Observing that the second term is “usually” small, we choose the plus sign:

             
dr
dx 0

=
r /2m −1
r /2m −2

.           (15) 

This shows dramatic changes only at very small radii, and answers our quest in the 

region z=0,  0<r<a.  

Let us ask now about angular propagations in  ϕ, which is to 

say differentials  d  .   Near the plane of z=0,  when  r<a,   the equations become 

simple if we look at changes only in that variable.  Here:

         ds 2= d x 02− a2sin2d 2 ,                                (16) 

and we may say: ds 2= d x 02− r 2d 2 .          (17)  

As long as are looking at movements only in that coordinate,  the original transform 
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indicates that:   d = d  ,  so after we realize that without a differential in r,  the  

Eddington term is transparent, the problem is solved with an unchanged value:

         r d = d x 0 .         (18)  

We thus get the same behavior as for radial differentials, with the Eddington term 

contributing as before.     

Consider now differential movements in z   for   r<a   from the <x,y>-plane. 

We are accustomed to thinking of these as represented by a change in θ,   but this is 

not the case for the transformed coordinates in this domain.  Indeed a  dz  is mapped 

into  dρ.   Looking at the solution for ρ(r,z),  we can see that if  R 2≡a 2 − r 2 ,   then:

                 2 =−R 2/2 R 4/4  a 2z 2  ,                               (19) 

and if z  is small:         2 =R 2/2[−1 1  4a 2 z 2

R 2 ] ≈ a 2 z 2

R 2 .         (20)

     This is a smooth continuation of the definition of  cos  ,  so we can say for 

small deviations,      d  =
dz

cos 
.   The metric form is now:  ds2 =d x 02− dz 2 ,  

where the term comes from substituting into the d 2  differential.  Thus, like the 

other two Cartesian directions, this has the Schwarzschild dependence at  r~2m . 

It seems there is isotropy here.   

  Part III:  Ariadne's Thread

 

In the domain z=0,  let us look first at behavior for radial changes for 

r≥a .  Here there is non-zero  dρ,   though we may say that strictly:  cos =0 .   
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The metric form is:   

                ds2 = 1− 2m / d x 02−
2

 2a 2
d 2 − 2d 2 − ... ,       (21) 

and in this regime we have:   2a 2= r 2     and may say:         d = r d r . 

These relations are substitued into the radial term to yield:

          ds2 = 1−2 m
r 2−a 2  d x 02− dr 2 .       (22) 

Other transformations do not confuse things, as before, and we can substitute with the 

Eddington transform:  

ds 2= 1− 2m
r 2−a 2  dx 0

dr
r /2m−1 

2

− dr 2 .              (23) 

We are not considering changes in polar angle, since outside of r=a  they take us out 

of the  <x,y>  plane.  We can look at null geodesics,  and shorten notation a bit by 

calling the first parenthesized term:      T ≡1−
2m

r 2−a 2 .   Now when ds=0,  

          T dx 0 
dr

r /2m−1 =±dr ,          so:   
dr
dx 0

= T

1− T
r /2m−1

.     (24)

We can see two terms of interest:  T  has a pole at r=a,   and, distinctly, 

the denominator in the time transform becomes zero as usual for r  nearing  m.  We 

are not interested in this regime at the moment.  For radii of ra ,   T  is close to 

unity, but as the critical radius a  is approached, on a scale of m,   it goes down 

through zero and blows up asymptotically as  r↠a,  with a minus sign.  Regardless of 

the confusion of an imaginary root,  at this pole the  whole fraction becomes close to:
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dr
dx 0

 −r /2m−1  ,                                          (25) 

a large quantity.  This is strange since it is not matched by behavior approaching this 

point from the inside.  Our suspicions of odd results surrounding the indefinite 

character of g
00 at the critical radius are certainly born out.  

Let us ask now about angular propagations in  ϕ, which is to say differentials 

d  .   We expect complications as with radial propagations:   

  ds2 =1−2m /d x 02 − r 212ma 2/r 2d 2 − 4
am


d x 0d  .      (26)       

Indeed the plot thickens with the need to include the cross-term.  For the null form:

0=−1−2m /  r 212 m


a 2

r 2


d 

d x 0

2

 4
ma


d 

d x 0 .       (27)  

This is a quadratic form and we may solve it, defining   N=a/r:   

          r
d 

d x 0
=

1−2Nm /

12N 2m /
.                      (28) 

This generalizes  1−2
m

  which  was earlier called “T”   and we can see behavior 

gets strong as  ρ  goes to zero.   The fraction in the farfield becomes unity, as 

N 0 .    

It is more subtle to interpret a Cartesian differential in  z.   In the region near the 

z=0  plane,  we can now deal with:  cos  = z /  .   As long as we are outside the 

critical radius this is well defined.  If ρ  is finite,  then it will not depend immediately on 

a change in z  so we may say:  −sin d  = dz / .  Since we assume we are near 

=/2   we can ignore, to first order, changes in sin   and write the metric term as: 
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           −2 d 2 =−
dz 2

sin2 
 ,           or simply   −dz 2 .     (29) 

The  metric form is:        ds2 =1−2m /d x 02− dz 2 ,                     (30) 

which is quite like the radial solution for null paths:    ±dz = 1−2m /d x 0 . (31)

This completes the study of null geodesics in the plane  z=0.   Behavior is 

asymptotic approaching the ring of r=a  from outside, though the implied scale is 2m.  

Since  a≫2m    this invites physical interpretation.  One might wonder about the 

choice of the  (+) sign in the quadratic solution for 2  but this is the only useful 

choice to meet a “flat” far-field constraint.                  

Part IV:  The Fourth Dimension

The final simple analytic question is about the field in the locus  <x,y>=0. 

As we go up on the z-axis,  it is clear that  r=z=ρ   and the polar angle is zero,  so: 

cos =1 .   The metric form is:

ds2 = 1− 2m 
2a 2 d x 02−

2a 2

2a 2−2m 
d 2 −2a 2d 2 .  (32) 

Since denominators contain  a 2  the m- terms will be insignificantly small.   Thus:

ds2 =d x 02− d 2 −z 2a 2d 2 . (33) 

The only job is to figure the space terms for deviations off-axis,  so we can examine 

null geodesics of dr c =d  x 2y 2 .   It is fairly easy to convince ourselves that there 

is no first-order change from the ρ-term, since a small move in  x  or  y  has only 

second-order effect in a sum of squares.  So such differentials should map to d  . 

Starting with the definition:      cos =z / ,   we may consider z  constant and ask 

about changes in ρ.    Here:    2 =1 /2z 2r c
2−a 2 1/4 z 2r c

2−a 22a 2z 2 .    (34) 
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Differentiating the cosine, we get:   −sin d  =−
z
2

d 

dr c

dr c .                              (35) 

However one accomplishes this, a little algebra shows:       
d 

dr c

=
r c z

a 2z 2 ,       (36) 

so we substitute and see:                  d  =
r c z 2 dr c

2sin  a 2z 2
.                               (37)  

We see there are two very small quantities, so we seek a valid expression 

for:                                         
r c

sin 
=

r c

1−z 2/2
.                                (38) 

It is not difficult to show that:             
r c

sin 
= a 2z 2 ,                                   (39) 

so we can express the angular change:       d  = a 2z 2−1/ 2dr c                      (40) 

where we allow    z/ρ=1,   to first order.    Thus these dependencies fall away in the 

final expression:                                z 2a 2d  2 = dr c
2 .                               (41)

    This somewhat anticlimactic result shows that lightspeed as seen 

externally is not changed except close to the origin in r,  in both the radial sense and 

the transverse sense, on the z-axis.  If we think back to the massive case, here the 

lotus of the inner circles has opened up on the z-axis and folded outward into a small 

region in the z=0  plane.
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